

Inductive compensation noise reduction

Wojciech Koczwara • Inductive compensation noise reduction | 13 Mar 23

Contributors:

Galin Ivanov, Microchip

prof. Osami Wada, Kyoto University

Simulation setup – differential noise injection

I1 is the differential noise source

Simulations:

- with/without impedance compensation
- with/without suggested RC dampers (400Ω/3pF differential)

Differential noise without inductive compensation

Max differential noise:

- 530mV (no impedance compensation)

Differential noise with inductive compensation

Max differential noise:

- 18.3 V (with impedance compensation [inductors only])

Differential noise with inductive compensation and RC dampers

Max differential noise:

- 670mV (with impedance compensation and 400Ω / 3pF RC dampers), 27x noise reduction

Effect of RC dampers for single cable length

Max differential noise:

- 16.3V (with impedance compensation, but no dampers)
- 630mV (with impedance compensation and 400 Ω / 3pF RC dampers)

Conclusions and next steps

- Links using inductive compensation and RC dampers exhibit comparable noise coupling to links without inductive compensation
- Still using inductive compensation allows for a large number of nodes due to greatly reduced reflections
- Suggest to add Inductive compensation to the spec, including RC dampers
 - Suggested Rdamp = 400Ω differential, Cdamp = 3pF differential
 - RC damper capacitance needs compensation from the inline inductors (+30nH for Cdamp=3pF)
 - Cdamp can be implemented as parallel PCB planes (3mm x 3mm planes @ 4mils separation)

Thank you

